Cold-Start Expert Finding in Community Question Answering via Graph Regularization
نویسندگان
چکیده
Expert finding for question answering is a challenging problem in Community-based Question Answering (CQA) systems such as Quora. The success of expert finding is important to many real applications such as question routing and identification of best answers. Currently, many approaches of expert findings rely heavily on the past question-answering activities of the users in order to build user models. However, the past question-answering activities of most users in real CQA systems are rather limited. We call the users who have only answered a small number of questions the cold-start users. Using the existing approaches, we find that it is difficult to address the cold-start issue in finding the experts. In this paper, we formulate a new problem of cold-start expert finding in CQA systems. We first utilize the “following relations” between the users and topical interests to build the user-to-user graph in CQA systems. Next, we propose the Graph Regularized Latent Model (GRLM) to infer the expertise of users based on both past question-answering activities and an inferred user-to-user graph. We then devise an iterative variational method for inferring the GRLM model. We evaluate our method on a well-known question-answering system called Quora. Our empirical study shows encouraging results of the proposed algorithm in comparison to the state-of-the-art expert finding algorithms.
منابع مشابه
Expert Finding for Community-Based Question Answering via Ranking Metric Network Learning
Expert finding for question answering is a challenging problem in Community-based Question Answering (CQA) site, arising in many applications such as question routing and the identification of best answers. In order to provide high-quality experts, many existing approaches learn the user model mainly from their past question-answering activities in CQA sites, which suffer from the sparsity prob...
متن کاملQDEE: Question Difficulty and Expertise Estimation in Community Question Answering Sites
In this paper, we present a framework for Question Difficulty and Expertise Estimation (QDEE) in Community Question Answering sites (CQAs) such as Yahoo! Answers and Stack Overflow, which tackles a fundamental challenge in crowdsourcing: how to appropriately route and assign questions to users with the suitable expertise. This problem domain has been the subject of much research and includes bo...
متن کاملZhihuRank: A Topic-Sensitive Expert Finding Algorithm in Community Question Answering Websites
Expert finding is important to the development of community question answering websites and e-learning. In this study, we propose a topic-sensitive probabilistic model to estimate the user authority ranking for each question, which is based on the link analysis technique and topical similarities between users and questions. Most of the existing approaches focus on the user relationship only. Co...
متن کاملDetecting Spammers in Community Question Answering
As the popularity of Community Question Answering(CQA) increases, spamming activities also picked up in numbers and variety. On CQA sites, spammers often pretend to ask questions, and select answers which were published by their partners or themselves as the best answers. These fake best answers cannot be easily detected by neither existing methods nor common users. In this paper, we address th...
متن کاملDeceptive Answer Prediction with User Preference Graph
In Community question answering (QA) sites, malicious users may provide deceptive answers to promote their products or services. It is important to identify and filter out these deceptive answers. In this paper, we first solve this problem with the traditional supervised learning methods. Two kinds of features, including textual and contextual features, are investigated for this task. We furthe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015